

干旱气象动态

INFORMATION OF ARID METEOROLOGY

中国气象局兰州干旱气象研究所

2025年01月 第01期

目录 DIRECTORY

国内干旱动态

- 气象干旱形势
- 气象干旱分布
- 全国土壤水分遥感监测
- 农业干旱监测
- 干旱预测

国际干旱动态

- 美国南部旱情发展, 德州极端干旱
- 澳大利亚旱情缓解

国内外干旱研究动态

- 植被绿化加剧了未来复合土壤干热极端事件的增加
- 夏季快速变暖条件下土壤水分—大气耦合加剧东亚内陆极端高温变化
- 中国高温、干旱及其复合事件的研究进展和展望
- 贵州省两次气象干旱对比分析及基于机器学习的干旱预测模型建立

干旱气象动态

国内干旱动态

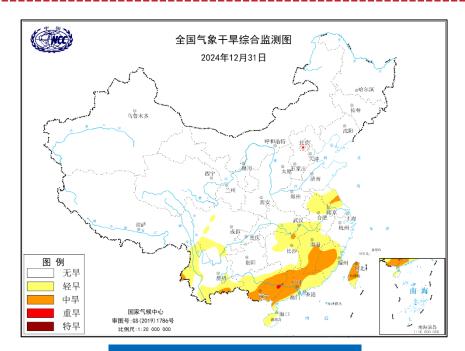


图1 最新全国MCI干旱指数分布图

(图引自国家气候中心网站)

气象干旱形势

据国家气候中心最新干旱监测显示,截至2024年12月31日, 江淮、江汉、江南中部、华南大部、西南地区西部及南部和台湾省 有轻到中度气象干旱,其中华南西部个别地方有重旱(图1)。

气象干旱分布

2024年12月,江汉、江淮、江南、西南、华南等地有轻至中度 气象干旱,其中华南西部个别地区有重旱。上旬,江南局地、华南 西部及东部、西南西部和台湾省有轻至中旱,其中华南西部个别地 区有重旱。中旬,华南旱情持续加重,重旱面积明显扩大,西南旱 情基本维持,江南旱情先减弱后加重,台湾省旱情无明显变化。至 12月下旬,西南旱情面积增大,江南和华南的旱情有不同程度加重,

中国气象局兰州干旱气象研究所

其中华南西部重旱面积继续扩大, 江南东部出现重旱, 江汉、江淮出现轻至中旱, 海南 岛出现轻旱(图2)。2024年12月全国旱情逐候分布及演变见图3所示。

2024年12月全国旱情分布示意图

(源自国家气候中心全国气象干旱综合监测图)

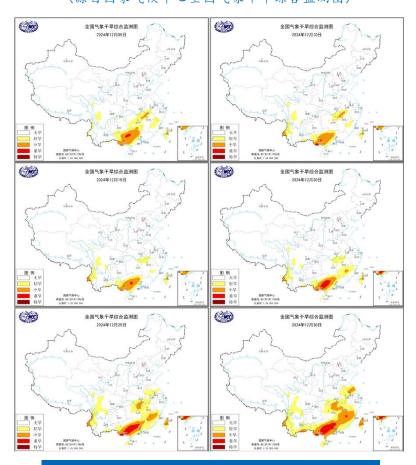


图3 2024年12月全国MCI干旱指数逐候分布及演变图

(图引自国家气候中心网站)

全国土壤水分遥感监测

2024年12月逐旬土壤水分距平百分率显示(图4),上旬,与多 年同期相比,华南中、东部,华东南部及新疆局部区域土壤水分偏少 20%以上。中旬、全国除西藏、青海和华北以外其他地区土壤水分存 在不同程度偏少,特别是华南、华东和华中大部土壤水分偏少20%以 上。下旬, 土壤水分偏少区域分布与中旬类似, 但强度有所减小, 华 南与华东较多区域土壤水分仍偏少20%以上。

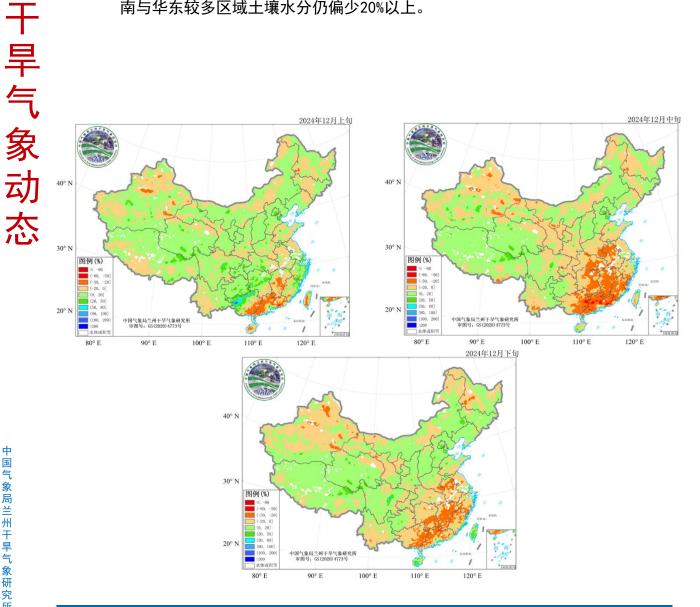


图4 中国气象局兰州干旱气象研究所2024年12月逐旬AMSR2微波遥感土壤水分距平百分率监测图 (单位:%)

图5 2024年12月31日08时全国20cm土壤墒情图

(信息来源:中央气象台 农业气象)

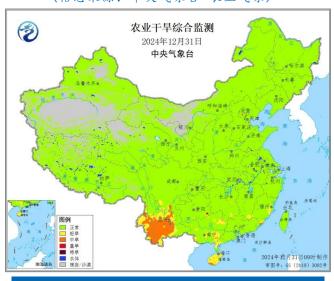


图6 2024年12月31日全国农业干旱综合监测

(信息来源:中央气象台 农业气象)

干旱预测

利用中国气象局兰州干旱气象研究所改进后的RegCM5.0模式,对2025年1月全国降水、气温及干旱趋势进行预测表明:1月全国降水整体偏少、气温整体偏低;此外,2025年1月西藏局地、内蒙古西部、甘肃南部、东北南部、黄淮西部、江汉东部、江淮西部、江南南部、华南中西部、西南南侧局地有中到重旱,东北南部和华南西部局地有特旱,全国其余区域为轻旱或无旱。

一、降水预测

预计2025年1月全国降水总体偏少。除南疆西部与东部及北疆北部、 西藏北部、三江源及周边、内蒙中部、东北南部、山东半岛、江淮东部、 海南岛和台湾岛降水偏多(大多偏多5成以上)外,其余地区降水偏少, 其中南疆中部及吐鲁番地区、西藏南部、甘肃中部与北部、宁夏及内蒙 古西部、华北西南部、黄淮西部、江汉、江淮西部、江南、华南中西部、 西南南部局地偏少5~8成,黄淮西部和华南中西部局地偏少8成以上 (图7)。

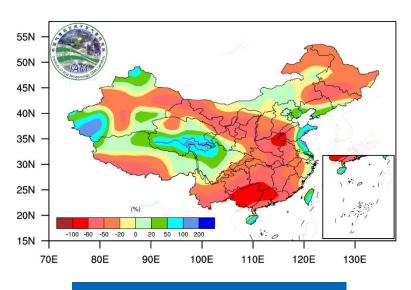
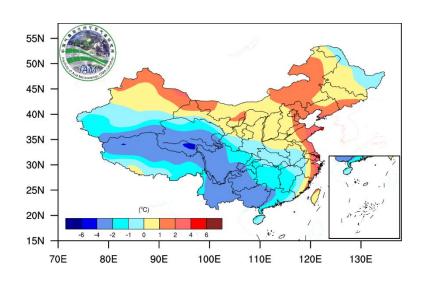


图7 2025年01月降水距平百分率 (单位:%)


二、气温预测

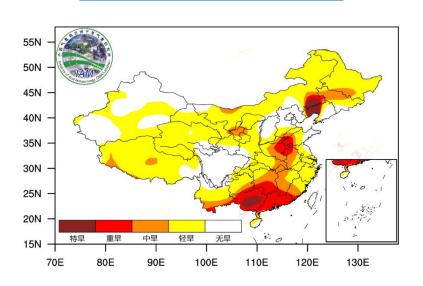
预计2025年1月除新疆北部、甘肃西北部、内蒙古东部及西部、 东北南部、华北北部以及黄淮、江淮、江南、华南的沿海局地和台湾 岛气温偏高1~2°C以外,全国大部分区域气温较常年偏低(图8)。

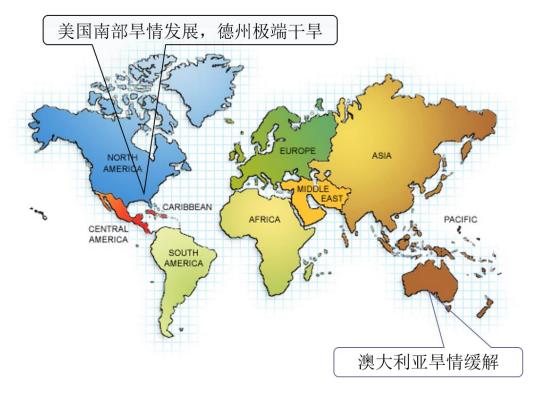
中国气象局兰州干旱气象研究所

三、干旱预测

K 干旱指数预测结果显示, 2025年1月西藏局地、内蒙古西部、甘肃南 部、东北南部、黄淮西部、江汉东部、江淮西部、江南南部、华南中西部、 西南南侧局地有中到重旱, 东北南部和华南西部局地有特旱, 全国其余区 域为轻旱或无旱(图9)。

2025年01月气温距平 (单位: ℃)




图9 2025年01月干旱等级预测

干旱气象动

态

国际干旱动态

2024年12月,美国南部旱情发展,德州极端干旱。具体来看,旱情严重区域主要在德克萨斯州西南部、内达华州东南部、亚利桑那州西部、蒙大拿州东部、怀俄明州东部、北达科他州西部,以极端干旱为主,局部区域达到最严重的异常干旱等级。在南达科他州西部、新墨西哥州南部、内布拉斯加州北部、密歇根州北部、田纳西州东部,以重旱为主,局部达到极端干旱。在明尼苏达州北部、阿拉巴马州南部、加州东南部、爱达荷州北部、堪萨斯州北部、爱荷华州大部、密苏里州西部、威斯康星州北部、伊利诺伊州北部、印第安纳州北部、缅因州东部、宾夕法尼亚州东部、北卡罗来纳州东部、佛罗里达州北部,有中旱,局部区域达到重旱。华盛顿州大部、俄勒冈州中部、犹他州大部、阿肯色州中部、密西西比州北部、俄克拉荷马州南部、科罗拉多州北部、佐治亚州北部、纽约州东部、佛吉尼亚州东部,有轻旱。

2024年12月,澳大利亚旱情缓解。北部的轻、中旱区域基本缓解。南部轻—中旱覆盖区域大幅度减小。旱情严重地区主要集中在西澳洲南部、南澳州西南部,以轻—中旱为主。维多利亚州南部、北领地和昆士兰州局区有轻旱。

Future increase in compound soil drought-heat extremes exacerbated by vegetation greening

植被绿化加剧了未来复合土壤干热极端事件的增加

Jun Li, Yao Zhang, Emanuele Bevacqua, et al.

随着全球变暖,复合土壤干旱和极端高温预估将更加频繁地 发生,造成广泛的社会生态影响。植被通过生物物理过程调节气 温和土壤湿度,从而影响此类极端天气的发生。在气候变化下, 全球植被覆盖率普遍预计会增加,但目前尚不清楚植被绿化是否 会缓解或加剧未来复合土壤干旱—高温事件的增加。在这里,我 们使用一套最先进的模型模拟,表明预计的植被绿化将增加全球 复合土壤干旱—高温事件的频率,相当于21世纪末总增量的12-21%。这种增加主要是由反照率降低和与叶面积增加相关的蒸腾 作用增强所驱动的。虽然绿化引起的蒸腾作用增强具有抵消冷却 和干燥效应,但生长季早期的过度水分流失会导致后期土壤水分 不足,从而加剧随后暖季的复合土壤干旱—高温事件。这些变化 在北部高纬度地区最为明显,主要受二氢化碳的增温效应影响。 我们的研究强调了将植被生物物理效应纳入应对复合气候风险的 缓解和适应战略的必要性。

Soil moisture—atmosphere coupling amplifies the change in extreme heat in inner East Asia under rapid summer warming

夏季快速变暖条件下土壤水分—大气耦合加剧

东亚内陆极端高温变化

Zejiang Yin, Buwen Dong, Song Yang, et al.

东亚内陆地区(IEA)是全球草原生态系统的重要组成部分,近几十年来,该地区极端地表气温的上升速度比夏季平均气温的上升速度更快(2001-2020年,相对于1971-1990年)。这种过度极端增暖(EHEW)在东亚内陆南部地区尤为明显,该地区极端高温的上升速度是夏季平均变暖的两倍,而夏季平均变暖本身已经是全球陆地变暖的三倍多。基于拉格朗日温度异常方程,对东亚内陆地区炎热天气下气流后向轨迹的定量分析表明,观测到的EHEW主要归因于非绝热加热的增加,这种加热主要发生在炎热天气前2天。同时,易受高温影响的天气尺度环流的变化对过度变暖的影响有限。IEA内的土壤干燥似乎是导致非绝热加热增加的一个关键因素,因为它通过土壤水分-大气耦合限制了蒸发并增强了敏感热通量,从而引发了正的土壤水分-温度反馈。我们的分析强调了当地土壤水分不足对加剧极端高温的重大影响。紧急实施草地和牲畜管理战略,加上干旱缓解措施,对于适应和生态系统保护至关重要。

摘译自https://doi.org/10.1088/1748-9326/ad95a1

中国高温、干旱及其复合事件的研究进展和展望

祝亚丽 刘 洋 孔祥慧 王晓欣 张梦琪 洪晓伟 陈活泼 孙建奇

干旱是全球最主要、影响最严重、也是中国频发的气象灾害 之一。随着全球变暖,干旱更易与高温同时发生,干旱与高温的 正反馈过程导致极端事件持续更久、强度更强,形成高温干旱复 合极端事件,对农业、生态环境等造成更为严重的影响。本文通 过对中国高温、干旱及其复合事件的研究进展回顾,总结了中国 高温、干旱及其复合事件的变化事实,并对影响中国高温、干旱 的关键因子及物理机制进行了梳理。指出了当前研究存在的不足, 并提出系统研究海温-陆面-海冰-大气多因子、多过程协同影响中 国复合高温干旱事件的必要性。最后,对当前高温干旱的预测现 状进行了简要回顾,指出在系统认识复合高温干旱事件发生发展 机制的基础上,亟须发展动力 - 统计相结合的方法提升其预测水 平。

摘自 大气科学学报, 网络首发:

https://doi.org/10.13878/j.cnki.dgkxxb.20240911002.

11

干

早气象

动

态

贵州省两次气象干旱对比分析及基于机器学习的

干旱预测模型建立

王玥彤 何东坡 李忠燕 王烁 陈早阳

对比分析贵州省主汛期(6-9月)不同干旱事件的特征. 有 助于提升贵州省短期气候预测技术。基于贵州省84个气象台站降 水资料,分析贵州省1981—2023年2次严重干旱事件的时空演变 特征,并利用再分析数据揭示事件成因,比较两者差异;同时结 合国家气候中心130项气候指数和机器学习方法对贵州省干旱事 件进行建模。结果表明,贵州省主汛期降水量呈明显年代际变化 特征, 2011、2022年在拉尼娜背景下降水最少; 2011年贵州省大 范围干旱的主要原因是西太平洋副热带高压(简称"西太副高") 偏东及低层南海地区气旋式环流异常,导致水汽条件差:2022年 在热带印度洋偶极子负位相影响下, 西太副高异常偏大、偏西、 偏强,南亚高压偏强、偏东,气温异常偏高,中国南方地区低层 为反气旋式环流异常,水汽条件差并伴随持续高温,导致贵州省 干旱加剧。通过机器学习的26种算法建立贵州省干旱预测模型. 其中Linear SVC模型的预测效果最好, 检验评估表明, 该模型对 贵州省2011、2022年的干旱有较好的预测能力。

摘自 干旱气象, 2024, 42(05):671-682.

制作:干旱预测研究室;

干旱监测研究室: 办公室

签发:岳平