

干旱气象动态

INFORMATION OF ARID METEOROLOGY

中国气象局兰州干旱气象研究所

2025年10月 第11期

目录 DIRECTORY

国内干旱动态

- 气象干旱形势
- 气象干旱分布
- 全国土壤水分遥感监测
- 农业干旱监测
- 干旱预测

国际干旱动态

- 美国东部旱情发展,西部旱情缓解
- 澳大利亚东南部旱情缓解

国内外干旱研究动态

- 自20世纪80年代以来,亚昼夜不对称变暖加剧了大气干旱
- 气候变暖下黄河流域空间并发性干旱风险增加
- 全球多时间尺度复合高温干旱增加
- 2024年7—9月浙江省极端高温成因分析

干旱气象动态

国内干旱动态

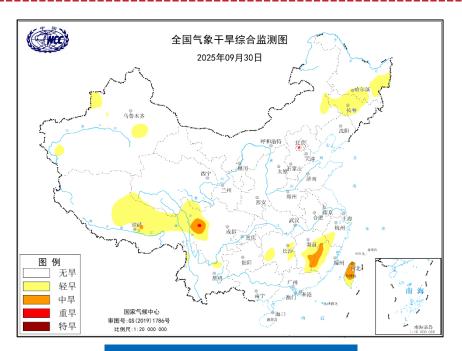


图1 最新全国MCI干旱指数分布图

(图引自国家气候中心网站)

气象干旱形势

据国家气候中心最新干旱监测显示,截至2025年9月30日,新疆、 东北、西藏东部、江南、西南西北部局地和台湾省有轻到中度气象干旱, 其中西南西北部局地有重旱(图1)。

气象干旱分布

2025年9月,新疆、西藏东部、东北、黄淮、江南、西南等地有轻至中度气象干旱,部分地区有重旱。上旬,新疆、西藏东部、陕西、东北、黄淮、江汉、江南、西南局地、台湾省以及内蒙古的零星区域有轻至中旱,其中北疆局地有重旱。中旬,东北旱情略有加重,江南、西南地区和内蒙古零星区域旱情先减缓后加重,西藏旱情先加重后减缓,新疆旱情略有缓解,陕西、黄淮、江汉旱情基本解除。至9月下旬,新疆和内蒙古零星区域旱情进一步减缓。西藏东部、东北和江南旱情先减缓

后加重,西南地区旱情持续加重,出现重旱(图2)。2025年9月全国旱情逐候分布及演变见 图3所示。

图2 2025年9月全国旱情分布示意图

(源自国家气候中心全国气象干旱综合监测图)

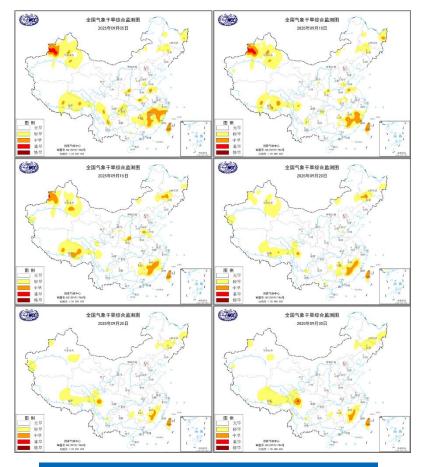


图3 2025年9月全国MCI干旱指数逐候分布及演变图

(图引自国家气候中心网站)

全国土壤水分遥感监测

2025年9月逐旬土壤水分距平百分率显示(图4),上旬,东北、 内蒙古、西北地区和新疆土壤水分整体偏少,其中东北中部和北部土 壤水分偏少2成以上,局地超5成,内蒙古中东部、新疆西部和南部、 西北地区中部和西部、华东南部、华南和西南局地土壤水分偏少2成 以上。中旬,青海、内蒙古和东北部分区域、贵州和广西局地土壤水 分偏少2成以上。下旬,内蒙古中东部、东北地区中部和北部、青海 南部、西藏中部、华南中部局地土壤水分偏少2成以上。

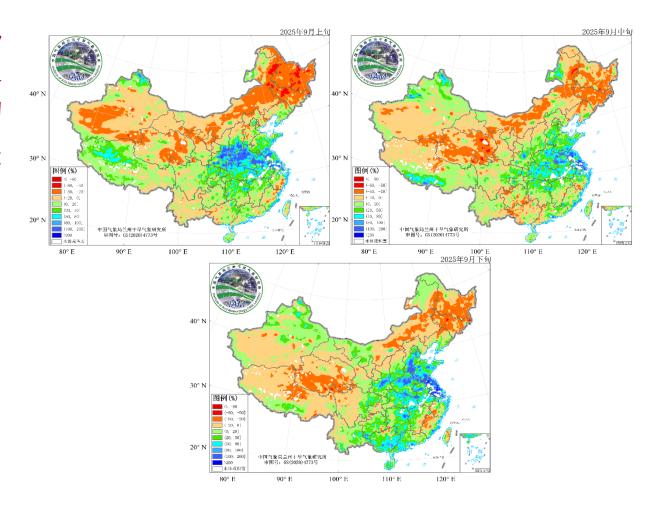


图4 中国气象局兰州干旱气象研究所2025年9月逐旬AMSR2微波遥感土壤水分距平百分率监测图 (单位:%)

图5 2025年9月30日08时全国20cm土壤墒情图

(信息来源:中央气象台 农业气象)

图6 2025年9月30日全国农业干旱综合监测

(信息来源:中央气象台 农业气象)

利用中国气象局兰州干旱气象研究所改进后的RegCM5.0模式,预测2025年10月全国降水、气温及干旱趋势,结果表明:10月全国降水整体偏少、气温整体偏高;2025年10月新疆、华北南部、黄淮、江汉、江淮、江南、华南西部、西南南部局地有中至重旱,其中江汉、江淮、江南、华南西部局地有特旱,全国其余区域为轻旱或无旱。

一、降水预测

预计2025年10月全国降水总体偏少。预计南疆西部山区、西藏、甘肃西北部、内蒙古东部及西部、东北、海南岛和台湾省降水偏多2~5成,其中新疆、西藏局地降水偏多1倍以上;北疆及南疆局地、内蒙古中部、陕西南部、华北南部、黄淮、江汉、江淮、江南、华南、西南降水偏少5~8成,其中黄淮、江汉、江南、华南西部、西南南部局地偏少8成以上(图7)。

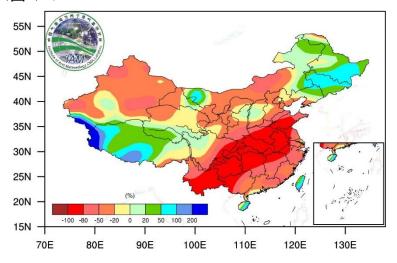


图7 2025年10月降水距平百分率(单位:%)

二、气温预测

预计2025年10月除南疆西部、青海、西藏、内蒙古东部、东北、 华北北部、西南西部局地气温偏低1℃以外,全国大部分区域气温较 常年偏高,其中北疆北部、陕西南部、江汉、江南西部、华南西部和 西南东部局地气温偏高2~4℃(图8)。

三、干旱预测

K 干旱指数预测结果显示, 2025年10月新疆、华北南部、黄淮、江汉、 江淮、江南、华南西部、西南南部局地有中至重旱, 其中江汉、江淮、江 南、华南西部局地有特旱,全国其余区域为轻旱或无旱(图9)。

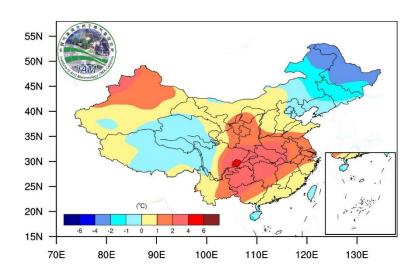


图8 2025年10月气温距平 (单位: ℃)

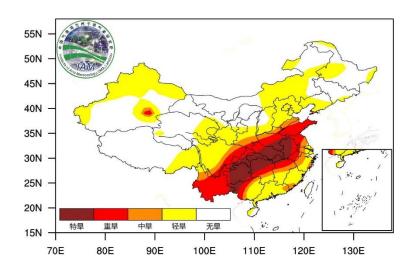


图9 2025年10月干旱等级预测

干旱气象动

态

国际干旱动态

美国东部干旱发展,西部旱情缓解

NORTH
AMERICA

CARIBBEAN
AFRICA

AFRICA

PACIFIC

澳大利亚东南部旱情缓解

2025年9月,美国东部干旱发展,西部旱情缓解。具体来看,旱情严重 区域主要在华盛顿州北部、爱达荷州北部、蒙大拿州西北部、怀俄明州西南 部、科罗拉多州西北部、亚利桑那州南部、新墨西哥州西南部,以极端干旱 为主,局部区域达到最严重的异常干旱等级。内华达州西南部、加州东南部、 犹他州大部、德州西南部、缅因州南部、佛蒙特州中部、俄亥俄州西北部、 西佛吉尼亚州东部,以重旱为主,局部达到极端干旱。在内布加斯加州西部、 密苏里州南部、阿肯色州北部、伊利诺伊州大部、印第安纳州北部、密歇根 州北部、密西西比州北部、田纳西州西部、阿拉巴马州大部、佐治亚州南部、 佛吉尼亚州北部、宾夕法尼亚州北部、纽约州西部,有中旱,局地有重旱。 俄克拉荷马州东部、明尼苏达州北部、威斯康星州北部、路易斯安那州南部, 有轻旱。

2025年9月,澳大利亚东南部旱情缓解,中旱基本缓解,轻旱区域大幅度减小。旱情严重地区主要集中在西澳洲东南部、南澳州西南部,以轻-中旱为主。维多利亚州东南部、新南威尔士州南部、昆士兰州中部,有轻旱。

Increased risks of spatially concurrent droughts in the yellow river basin under climate warming

自20世纪80年代以来,亚昼夜不对称变暖加剧了大气干旱

Ziqian Zhong, Hans W. Chen, Aiguo Dai, et al.

大气饱和水汽压差(VPD)——作为衡量大气干旱程度的指 标,定义为饱和水汽压(SVP)与实际水汽压(AVP)之差—— 自20世纪80年代以来持续上升,这与日均近地表气温的升高密切 相关。然而, 日最高气温(Tmax)相较于日最低气温(Tmin) 的更快上升是否加剧了VPD的增加、尚不明确。本研究通过分析 1980至2023年的数据发现、陆地地区Tmax比Tmin更快速的上升 加剧了VPD的增强。这种亚昼夜不对称变暖现象导致SVP的增幅 大于均匀升温时的情况,而AVP则更多受Tmin的影响。基于再分 析数据的估算表明,不对称变暖对全球陆地VPD增加的贡献率约 为18%。逐小时站点观测数据进一步验证了这一规律,显示不对 称变暖在所有站点VPD增强中的贡献度约为30%。我们的研究结 果表明,过去四十年来,亚昼夜不对称增温显著放大了全球变暖 对大气干旱化的影响, 这对陆地水资源可持续性和碳循环具有重 要启示。

Increased risks of spatially concurrent droughts in the yellow river basin under climate warming

气候变暖下黄河流域空间并发性干旱风险增加

Jiatong Lu, Xiaoling Su, Te Zhang, et al.

全球变暖导致空间并发性干旱事件频发,对水安全构成严重 威胁。然而, 黄河流域空间并发干旱的特征尚不明确。本研究基 于第六阶段国际耦合模式比较计划(CMIP6)数据集、Copula函 数和标准化降水指数(SPI),构建了黄河流域历史时期(1961-2022年)和未来时期(2025-2100年)在SSP245与SSP585情景下 气象干旱空间并发风险的评估模型。结果表明: 历史时期两个子 流域并发干旱概率介于10.07%-21.43%之间, 秋季风险最高, 且 上游-中游(UM)区域风险更为突出;三个子流域(上游-中游-下游, UMD) 并发干旱概率为7.61%-13.81%, 春季风险最高。厄 尔尼诺-南方振荡(ENSO)对空间并发干旱的影响最为显著,其 次是太阳黑子和北涛动(AO),太平洋年代际振荡(PDO)影响 相对较弱。未来SSP585情景下中游降水格局呈现不稳定态势,干 旱风险趋于两极分化。预计全流域空间并发干旱风险将整体上升 (增幅0.61%-8.07%), 其中UM区域尤为明显。冬季UM和上游-下游(UD)区域的并发干旱概率将大幅增加(分别上升3.35%-8.07%和0.46%-6.31%), 且持续的高排放会加剧干旱风险。对于 UMD区域,秋冬两季干旱风险持续增加,空间并发干旱概率预计 将分别上升1.46%-3.07%(SSP245)和3.11%-5.33%(SSP585)。 本研究为黄河流域空间并发干旱演变规律认知、干旱风险管控及 水资源合理配置提供了新视角。

09

全球多时间尺度复合高温干旱增加

张义桐 郝增超 陈阳 庞宇婷 Vijay P.SINGH

复合高温干旱事件是指同时或者相继发生的高温和干旱事件,可对 自然系统和人类社会造成比单一事件更大的影响, 复合高温于旱事件的 演变研究通常关注特定时间尺度,而对于不同时间尺度上的变化缺乏系 统认识. 本文基于欧洲中期天气预报中心第五代大气再分析数据(ERA5) 和第六次国际耦合模式比较计划(CMIP6)模拟数据,分析了历史时期 (1951~2014年)和未来时期(2015~2100年)全球多时间尺度复合高温 干旱事件的变化特征, 结果表明, 在历史时期, 周、月、季和年尺度的复 合高温干旱事件频率均增加(相对变化分别为31.73%、65.15%、92.27% 和184.63%).此外,历史时期四个时间尺度的复合高温干旱事件空间范 围一致增加(趋势分别为1.16%/十年、1.84%/十年、2.26%/十年和 3.38%/十年).上述复合高温干旱事件频率及空间范围的变化可归因于 人为影响, 在选定的26个气候区域, 东非(EAF)、东亚(EAS)、南欧/地中 海(MED)、撒哈拉(SAH)、东南亚(SEA)和西非(WAF)在历史时期多个时 间尺度上的复合高温干旱频率或空间范围增加更为突出. 在未来共享社 会经济路径(SSP)2-4.5情景下,不同时间尺度复合高温干旱事件的频率 和空间范围将进一步增加,特别在亚马逊(AMZ)、MED、巴西东北部 (NEB)、南非(SAF)、澳大利亚南部/新西兰(SAU)以及南美洲西海岸 (WSA) 等区域的增加更为突出. 本文结果有助于制定适应策略以应对未 来变暖背景下不同时间尺度极端事件的威胁.

2024年7—9月浙江省极端高温成因分析

胡跃鹏 赵军平 刘汉华 付 远 孙善磊 宋子祎

在全球气候变暖背景下,极端高温事件频发,浙江省2024年7—9月经历破纪录极端高温事件,全省平均高温日数达46 d,重现期估算为82 a一遇。基于浙江省气象站观测数据、中国气象局高分辨率陆面数据同化系统(High Resolution China Meteorological Administration Land Data Assimilation System, HRCLDAS)、美国国家海洋和大气管理局(National Oceanic and Atmospheric Administration, NOAA)海温及欧洲中心第五代再分析资料(European Centre for Medium-Range Weather Forecasts Reanalysis v5, ERA5),采用统计分析与动力诊断等方法,综合分析此次事件的大气环流特征及其与北大西洋海温异常的联系。结果表明:(1)西太平洋副热带高压西伸和南亚高压的东扩同时增强是造成2024年浙江省极端高温事件的关键动力成因,在此环流控制下,全省为持续性异常下沉运动,云系偏少,绝热增温和辐射增温叠加,直接引发极端高温事件。

(2) 热带北大西洋海温异常是重要外强迫因子。前期(4—6月) 热带北大西洋海温异常偏暖通过激发大气遥相关波列,显著影响 东亚至西太平洋的环流,促成西太平洋副热带高压和南亚高压同 时增强,诱发极端高温天气。(3) 中高纬度环流经向分量偏弱 不利于冷空气南下。同时,影响浙江的台风偏少偏弱,降水量偏 少,导致浙江异常高温持续时间长、极端性强。

摘自 干旱气象, 2025, 43(04):499-509.

制作:干旱预测研究室;

干旱监测研究室; 办公室

11

签发:岳平