1979—2008年夏季青藏高原东南部降水的低频振荡统计特征

刘炜1,2,周顺武2,王美蓉2,单幸2,刘新1

（1. 内蒙古自治区气候中心,内蒙古 呼和浩特 010051; 2. 南京信息工程大学大气科学学院,江苏 南京 210044）

摘 要: 利用青藏高原1979—2008年地面逐日降水资料及NCEP/NCAR逐日再分析资料,对高原东南部夏季降水的低频振荡特征进行统计分析,并讨论了该地区典型旱、涝年夏季降水的低频振荡特征以及低频环流的传播特征。结果表明:（1）青藏高原东南部作为高原夏季降水大值区,其低频振荡主要表现为10~20 d准双周振荡(QBWO)和30~60 d季节内振荡(ISO),其中QBWO最显著;（2）该地区旱、涝年夏季降水的低频振荡存在差异。其中,早年夏季降水以QBWO为主,而涝年夏季降水的ISO和QBWO均很重要,且QBWO的方差贡献在早年更高显著,而ISO的方差贡献在涝年相对更重要;（3）青藏高原高空100 hPa散度的ISO和QBWO普遍以驻波为主,其次是从高原向东部传播,但也存在少数由东部向西传播进入高原的低频振荡,表明夏季青藏高原主要是低频振荡的源地,有时也受外来影响。

关键词: 降水;低频振荡;传播特征;高原东南部

引言

综上所述，以往关于高原低频振荡周期及其源、汇特征的研究，大多是针对特殊时段和不同区域进行的个例分析，所得结论存在差异，其认识可能不具备普遍意义。为此，本文在统计分析1979—2008年高原夏季(6—8月)主要降水大值区(东南部)的降水低频振荡特征基础上，着重探讨该地区典型旱涝年夏季降水的低频振荡特征以及低频环流的传播特征，为全面认识高原地区低频振荡特征提供依据。

1 资料和方法

所用资料主要包括：(1)中国气象局国家气象信息中心提供的1979—2008年全国730个气象站逐日降水资料。经筛选，选取了高原地区具有完整观测记录的83个台站；(2) NCEP/NCAR提供的同期逐日再分析资料，格距为2.5°×2.5°。

2 夏季高原降水的时空分布

高原地处中纬西风带，平均海拔在4000 m以上，面积约占中国陆地面积的1/6。由于面积大，地势差异明显以及影响系统复杂，使其降水存在显著的区域性差异[23-24]。图1给出1979—2008年高原夏季降水量分布。可以看出，高原夏季降水大致呈现由东南向西北递减的分布特征，东南部为高原夏季降水量大值区，这可能与夏季进入高原的3条主要水汽通道有关[25-26]。

对1979—2008年高原夏季降水量场进行REOF分解，其中第1旋转载荷向量场的大值区位于高原东南部(图2)，该模态可解释总方差的15.76%。由此可看出，高原东南部是高原夏季降水量的主要水汽通道。

图2 1979—2008年高原夏季降水量REOF第一模态(●表示高原东南部12个代表站，阴影区是绝对值>0.5的区域)

Fig.2 The first REOF mode of precipitation in summer over the Tibetan Plateau during 1979—2008 (● for 12 representative stations in the southeast of the Tibetan Plateau, the shaded area for the absolute value greater than 0.5)

图3 1979—2008年高原东南部夏季降水量的年际变化序列及Morlet小波分析

Fig.3 The time series of summer precipitation in the southeast of the Tibetan Plateau from 1979 to 2008 and Morlet wavelet analysis

3 高原东南部夏季降水低频振荡特征

为了获取高原东南部夏季降水的低频振荡信号，对近30 a该地区夏季逐日降水序列进行Morlet
小波分析，考虑到边界效应等影响，将其分析的时域
进行适当延长，即从夏季（6—8月，共92d）延长至
5—9月（共153d）。表1给出1979—2008年夏季
高原东南部降水的低频振荡统计结果，可知，近30a
高原东南部夏季降水存在4个显著的低频振荡，分
别是10~20d（QBWO）、20~30d,30~60d（ISO）
以及60~90d振荡。其中，存在显著QBWO的年份
有25a，存在20~30d振荡的有10a，存在ISO的有
14a，而存在60~90d振荡的仅有5a。以上分析可
见，虽然不同年份高原东南部夏季降水的低频振荡
信号不尽相同，但QBWO和ISO是最显著的2个
低频振荡，以下仅关注这2个低频振荡。

从表1还发现，QBWO和ISO在典型旱涝年出
现的概率存在差异。4个早年中除1983年夏季降
水QBWO和ISO均显著外，其余3个早年仅QBWO
通过信度检验；而3个涝年夏季降水 QBWO和ISO
均显著。为进一步比较旱涝年这2个低频振荡的相
对重要性，表2给出高原东南部旱涝年夏季降水
QBWO和ISO的方差贡献。由表2看出，高原东南
部夏季降水 QBWO的方差贡献不论在涝年还是早
年均为最大。近30a中，仅有1979年夏季降水ISO
的方差贡献大于QBWO（表略）；ISO的方差贡献均
是涝年大于早年，而QBWO的方差贡献正相反，均
是早年大于涝年，且早年QBWO与ISO的比值均远
大于涝年，说明早年夏季降水 QBWO的方差贡献较
涝年更显著，而涝年夏季降水 ISO的方差贡献较早
年更显著。

图4是高原东南部旱涝年夏季降水序列及经
Butterworth带通滤波后的降水QBWO和ISO分量。
可以看到，4个早年QBWO与原降水序列的相关系数
远大于ISO与原降水序列的相关系数，表明在早
年QBWO降水的贡献相对较大；在涝年，虽然QBW
O与原序列的相关系数仍大于ISO与原序列的相
关系数，但两者差异不大（均通过α=0.01信度检
验）。这表明这2个低频分量在涝年对高原东南部降
水均有重要贡献。此外还注意到，当ISO和QBWO
的正（负）位相叠加时，该时段降水明显偏多（少），
且这一现象在早年尤为突出。
表 2 高原东南部典型旱涝年夏季降水 QBWO 和 ISO 的方差贡献(单位:%)
Tab. 2 QBWO and ISO variance contribution of summer precipitation in drought and flood years during 1979 – 2008 over the southeast of the Tibetan Plateau (Unit:%)

<table>
<thead>
<tr>
<th>年份</th>
<th>QBWO</th>
<th>ISO</th>
<th>QBWO/ISO</th>
<th>年份</th>
<th>QBWO</th>
<th>ISO</th>
<th>QBWO/ISO</th>
</tr>
</thead>
<tbody>
<tr>
<td>1983</td>
<td>16.99</td>
<td>6.53</td>
<td>2.60</td>
<td>1987</td>
<td>15.75</td>
<td>8.17</td>
<td>1.93</td>
</tr>
<tr>
<td>1992</td>
<td>16.58</td>
<td>6.27</td>
<td>2.65</td>
<td>1991</td>
<td>14.70</td>
<td>11.79</td>
<td>1.25</td>
</tr>
<tr>
<td>1994</td>
<td>16.84</td>
<td>3.35</td>
<td>5.02</td>
<td>1998</td>
<td>16.37</td>
<td>12.40</td>
<td>1.32</td>
</tr>
<tr>
<td>2006</td>
<td>25.99</td>
<td>6.23</td>
<td>4.17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>平均</td>
<td>19.10</td>
<td>5.59</td>
<td>3.61</td>
<td>平均</td>
<td>15.61</td>
<td>10.79</td>
<td>1.50</td>
</tr>
</tbody>
</table>

图 4 高原东南部早年(左)和涝年(右)夏季降水序列及其 ISO 和 QBWO 分量序列(单位:mm)
Fig. 4 Series of summer precipitation and ISO and QBWO component over the southeast of the Tibetan Plateau in drought (the left) and flood (the right) years (Unit:mm)

（柱状图表示原降水序列，实线为降水 ISO 分量，虚线为降水 QBWO 分量，
cor. 1 和 cor. 2 分别表示原降水序列与 ISO 和 QBWO 分量序列的相关系数）
4 高原东南部夏季降水低频振荡传播路径特征

目前，有关高原低频振荡传播特征的认识存在分歧\[9\]。由于低频降水与高低空低频散度场存在密切联系，鉴于高原海拔高，在高原地区更适宜分析高空散度场\[28\]。为了验证高原东南部低频降水与高空低频散度场的匹配关系，统计了近30 a 高空高
空散度场 QBWO 和 ISO 的传播特征（图略），发现不论在经向还是纬向上，高空低频辐散（合）传播至高
原东南部时基本都与该地区低频降水的正（负）位相对应，即高空低频辐散（合）有（不）利于低频降水的产生。

表 3 1979—2008 年夏季高原东南部 100 hPa 散度 QBWO 传播路径统计（单位：次数）

<table>
<thead>
<tr>
<th>年份</th>
<th>旱/涝</th>
<th>西入型</th>
<th>东出型</th>
<th>驻波 1</th>
<th>驻波 2</th>
<th>南出型</th>
<th>北入型</th>
<th>驻波 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979</td>
<td>正常</td>
<td>0</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>1980</td>
<td>正常</td>
<td>0</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1981</td>
<td>正常</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1982</td>
<td>正常</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1983</td>
<td>早年</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1984</td>
<td>正常</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1985</td>
<td>正常</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>1986</td>
<td>正常</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1987</td>
<td>涝年</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td>正常</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td>正常</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td>正常</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td>涝年</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>早年</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>1993</td>
<td>正常</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1994</td>
<td>早年</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td>正常</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>1996</td>
<td>正常</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1997</td>
<td>正常</td>
<td>1</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1998</td>
<td>涝年</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>1999</td>
<td>正常</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td>正常</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2001</td>
<td>正常</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2002</td>
<td>正常</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2003</td>
<td>正常</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2004</td>
<td>正常</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2005</td>
<td>正常</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>2006</td>
<td>早年</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>2007</td>
<td>正常</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2008</td>
<td>正常</td>
<td>3</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>总计</td>
<td></td>
<td>50</td>
<td>81</td>
<td>106</td>
<td>35</td>
<td>34</td>
<td>106</td>
<td></td>
</tr>
</tbody>
</table>

根据上述对高原高空低频散度场传播特征的统计结果，将高原东南部100 hPa 散度场的 QBWO 和 ISO 传播路径归纳为 5 种类型\[29\]：从东部大陆向西传播进入高原东南部（简称西入型）、从高原东南部向东移出高原（简称东出型）、从高原东南部向南移出高原（简称南出型）、从高原南侧向北传播进入高原（简称北入型）、没有传入和移出高原（简称驻波型）。需要说明的是，驻波又分为纬向传播的驻波（简称驻波 1）和经向传播的驻波（简称驻波 2）。

表 3 和表 4 分别给出 1979—2008 年夏季高原东南部 100 hPa 散度 QBWO 和 ISO 传播路径统计结果。由表 3 可知，纬向上，共有 53 次 QBWO 向西传

表 4 1979—2008 年夏季高原东南部 100 hPa 散度 ISO 传播路径统计（单位：次数）

<table>
<thead>
<tr>
<th>年份</th>
<th>旱/涝</th>
<th>西入型</th>
<th>东出型</th>
<th>驻波</th>
<th>南出型</th>
<th>北入型</th>
<th>驻波</th>
</tr>
</thead>
<tbody>
<tr>
<td>1979</td>
<td>正常</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1980</td>
<td>正常</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1981</td>
<td>正常</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>1982</td>
<td>正常</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>1983</td>
<td>旱年</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1984</td>
<td>正常</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>1985</td>
<td>正常</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>1986</td>
<td>正常</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1987</td>
<td>涝年</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>1988</td>
<td>正常</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1989</td>
<td>正常</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1990</td>
<td>正常</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1991</td>
<td>涝年</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1992</td>
<td>旱年</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1993</td>
<td>正常</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1994</td>
<td>旱年</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1995</td>
<td>正常</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1996</td>
<td>正常</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>1997</td>
<td>正常</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1998</td>
<td>涝年</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1999</td>
<td>正常</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>正常</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2001</td>
<td>正常</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2002</td>
<td>正常</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>2003</td>
<td>正常</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2004</td>
<td>正常</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2005</td>
<td>正常</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2006</td>
<td>旱年</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2007</td>
<td>正常</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>2008</td>
<td>正常</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>总计</td>
<td></td>
<td>11</td>
<td>24</td>
<td>48</td>
<td>27</td>
<td>29</td>
<td>26</td>
</tr>
</tbody>
</table>

播进入高原, 有 81 次向东移出高原, 有 106 次驻波, 依次占总次数的 21% 、34% 和 45%, 说明夏季高原 QBWO 在纬向上以驻波 1 为主, 向东移出高原次之, 向西传入高原最少。其中, 湍年 QBWO 向西传播进入高原和向东移出高原各有 5 次, 驻波有 10 次; 而旱年 QBWO 向西传播进入高原有 8 次, 向东移出高原有 13 次, 有 12 次驻波。经向上, 共有 35 次 QBWO 向南传播进入高原和向东移出高原各有 5 次, 驻波有 10 次; 而早年 QBWO 向南传播进入高原有 8 次, 向东移出高原有 13 次, 有 12 次驻波。经向上, 共有 35 次 QBWO 向南传播进入高原和向东移出高原各有 5 次, 驻波有 10 次; 而早年 QBWO 向南传播进入高原有 8 次, 向东移出高原有 13 次, 有 12 次驻波。
原及驻波出现的次数相当。其中，涝年 ISO 在纬向上共有 3 次向西传播进入高原，有 1 次向东移出高原，有 2 次驻波；经向上，向南移出高原共有 6 次，向北移入高原有 1 次，有 2 次驻波，可见涝年 ISO 在纬向上以向西传播进入高原为主，经向上以向南移出高原为主。在旱年 ISO 向西移入高原和向东移出高原各出现 2 次，出现 6 次驻波；经向上，向南移出高原和驻波各出现 4 次，向北移入高原有 2 次，可见旱年 ISO 在纬向上以驻波为主，经向上以驻波和向南移出高原为主。

综上所述，驻波是高原东南部高空散度 QBWO 和 ISO 的主要存在形式，但也存在部分低频振荡从外部传入高原并发展或是向外传播。其中，涝年高原 ISO 可能受东部大陆 ISO 西传进入高原的影响，使其方差贡献高于绝大多数正常年份和旱年；而 QBWO 不论在早年还是涝年主要以驻波或向东移出高原为主，表明 QBWO 主要是高原局地产生的振荡。

由于早涝年高原低频振荡传播存在明显差异，故选取近 30 年 ISO 特征较显著的涝年 1998 年和 QBWO 特征较显著的早年 1983 年为例，进一步分析 ISO 和 QBWO 的纬向和经向传播特征（图 5）。由图 5a 可以看出，1998 年涝年 ISO 共出现 2 次显著的西传现象，均是从西太平洋地区传播至长江中下游地区达到最强，之后继续西传到高原地区，这期间强度有所减弱，而西传的低频辐散（合）到达高原东部地区时与高原东南部低频降水的正（负）位相基本吻合。此外，还存在从高原西侧向东传播进入高原的低频分量，在纬向上表现为汇，而在经向上高原则表现为源，分别存在向北和向南的传播。且低频辐散（合）向南传至高原南部地区时与高原东南部低频降水的正（负）位相相对应（图 5b）。

图 5 1998 年 100 hPa 散度 ISO(a,b) 和 1983 年 100 hPa 散度 QBWO(c,d) 沿 30°N
的经度—时间剖面 (a, c) 和沿 95°E 的纬度—时间剖面 (b, d) (单位: 10^{-6} s^{-1})
（直线间的区域为高原地区，阴影区表示散度，边框上的黑色长方条表示高原东南部低频降水的正位相时段）

Fig. 5 The longitude – time sections along 30°N (a, c) and latitude – time sections along 95°E (b, d) of divergence ISO on 100 hPa in 1998 (a, b) and divergence QBWO on 100 hPa in 1983 (c, d) (Unit: 10^{-6} s^{-1})
(The area between two solid lines for the Tibetan Plateau, the shaded areas for divergence areas, the black solid bars on border indicate the positive phases of low frequency precipitation over the southeast of the Tibetan Plateau)
1983 年早年 QBWO 在经向上共出现 5 次较显著的东传现象（图 5c），一部分从高原东南部产生并向东传出，另一部分从高原中西部地区开始东传，并传播至长江中下游地区。除了从高原向东传出的低频分量，还存在少数从高原西侧向东传播进入高原的低频分量。总的来说，该年高原在经向上表现为源的特征。经向上（图 5d），共有 5 次驻波，5 月下旬和 8 月底分别存在一次南传，均是从高原北部向南传播至 20°N 附近。同 1998 年涝年一样，不论在纬向上还是经向上，高空低频辐散（合）传至高原南部地区的时间与高原东南部低频降水的正（负）位相基本吻合，说明高原东南部低频降水与高空低频散度场存在较好的对应关系。上述分析可见，典型旱涝年季节降水的低频振荡的特征与多年统计结果较一致。

5 结论

（1）QBWO 和 ISW 是高原东南部夏季降水的 2 个显著低频振荡，其中 QBWO 出现次数最多，方差贡献最大。

（2）高原东南部早涝年夏季降水 ISW 和 QBWO 存在显著差异。涝年夏季降水 QBWO 和 ISW 均很重要，而旱年夏季降水则以 QBWO 为主；QBWO 的方差贡献在早年更显著，而 ISW 的方差贡献在涝年更显著。

（3）驻波是高原东南部 100 hPa 散度 ISW 和 QBWO 的主要存在形式，其次是从东移出高原，但也存在少数从东部大陆向西传入高原的低频振荡。涝年，高原 ISW 可能受东部大陆 ISW 西传入高原的影响，其方差贡献高于绝大多数正常年份和旱年；而 QBWO 不论在早年还是涝年主要是以驻波或向东移出高原为主，说明 QBWO 主要是高原地区局地产生的振荡。

本文在完整，较长连续时间序列资料的基础上，统计了高原东南部夏季降水及大气低频振荡的气候特征，并较详细地分析了典型早涝年夏季降水的低频振荡特征及传播特征，得出的结论较以往的个例分析更具有普遍意义，但针对各年降水低频特征及其传播特征的分析还不够深入，今后还需进一步的研究。

参考文献
Statistic Characteristics of Summer Precipitation Low – frequency Oscillation over the
Southeast of the Tibetan Plateau from 1979 to 2008

LIU Wei¹,², ZHOU Shunwu², WANG Meirong², SHAN Xing², LIU Xin¹

¹. Inner Mongolia Climate Center, Hohhot 010051, China;
². College of Atmospheric Science, Nanjing University of Information Science & Technology, Nanjing 210044, China

Abstract: Based on the daily precipitation from 83 weather stations in the Tibetan Plateau and NCEP/NCAR reanalysis daily data with 2.5° × 2.5° spatial resolution, the low – frequency oscillation characteristics of summer precipitation over the southeast of the Tibetan Plateau from 1979 to 2008 were statistically analyzed. Furthermore, the characteristics of summer precipitation low – frequency oscillation and propagation of low – frequency circulation in typical flood and drought years were emphatically discussed. The results are as follows: (1) The precipitation in the Tibetan Plateau gradually decreased from southeast to northwest during 1979 – 2008, and it was maximum in the southeast of the Tibetan Plateau. There were two main periods of low – frequency oscillation of summer precipitation in the southeast of the Tibetan Plateau with 10 – 20 d Quasi – biweekly Oscillation (QBWO) and 30 – 60 d Intra – seasonal Oscillation (ISO), and the QBWO of summer precipitation was most significant. (2) The low – frequency oscillation of summer precipitation in flood and drought years over the southeast of Tibetan Plateau was significantly different. The QBWO of summer precipitation was main type in drought years, while ISO and QBWO were both significant in flood years. Furthermore, the variance contribution of QBWO of summer precipitation was more significant in drought years, while that of ISO was relatively more significant in flood years over the southeast of the Tibetan Plateau. (3) The standing wave was the main transmission mode of ISO and QBWO of divergence on 100 hPa over the southeast of the Tibetan Plateau, secondly it was the propagation from the southeastern Plateau to the eastern mainland. However, there were also a few oscillation waves propagating from the eastern mainland to the southeastern Plateau. In summary, the southeastern Plateau was main source of low – frequency oscillation in summer, but sometimes it was also affected by the external.

Key words: precipitation; low – frequency oscillation; propagation characteristics; southeastern Tibetan Plateau